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1
SYSTEM AND METHOD FOR AN
ASYNCHRONOUS PROCESSOR WITH
SCHEDULED TOKEN PASSING

This application claims the benefit of U.S. Provisional
Application No. 61/874,832 filed on Sep. 6, 2013 by Wuxian
Shi al. and entitled “Method and Apparatus of an Asynchro-
nous Processor with Scheduled Token Passing,” which is
hereby incorporated herein by reference as if reproduced in its
entirety.

TECHNICAL FIELD

The present invention relates to asynchronous processing,
and, in particular embodiments, to system and method of an
asynchronous processor with scheduled token passing.

BACKGROUND

Micropipeline is a basic component for asynchronous pro-
cessor design. Important building blocks of the micropipeline
include the RENDEZVOUS circuit such as, for example, a
chain of Muller-C elements. A Muller-C element can allow
data to be passed when the current computing logic stage is
finished and the next computing logic stage is ready to start.
Instead of using non-standard Muller-C elements to realize
the handshaking protocol between two clockless (without
using clock timing) computing circuit logics, the asynchro-
nous processors replicate the whole processing block (includ-
ing all computing logic stages) and use a series of tokens and
token rings to simulate the pipeline. Each processing block
contains a token processing logic to control the usage of
tokens without time or clock synchronization between the
computing logic stages. Thus, the processor design is referred
to as an asynchronous or clockless processor design. The
token ring regulates the access to system resources. The token
processing logic accepts, holds, and passes tokens between
each other in a sequential manner. When a token is held by a
token processing logic, the block can be granted the exclusive
access to a resource corresponding to that token, until the
token is passed to a next token processing logic in the ring.
There is a need for an efficient token passing scheme for the
asynchronous processor architecture.

SUMMARY OF THE INVENTION

In accordance with an embodiment, a method by an asyn-
chronous processor includes passing a token signal through a
token ring comprising a cascade of token processing logics,
and controlling which token processing logic to process next
the token signal in the cascade of token processing logics by
adjusting a polarity of a token sense logic at one or more token
processing logics. The controlling allows token forward and
backward jumps over the one or more token processing logics
in the cascade.

In accordance with another embodiment, a method per-
formed at an asynchronous processor includes determining,
using a token jump logic coupled to a cascade of token pro-
cessing logics, whether to administer a token forward jump or
a token backward jump of a token signal passing through the
token processing logics. The token forward jump and token
backward jump allow the token signal to skip one or more
token processing logics in the cascade. The method further
includes monitoring, for each of the token processing logics,
a polarity status of a token sense logic, and inverting the
polarity status according to the determination at the token
jump logic.
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2

In accordance with yet another embodiment, an apparatus
for an asynchronous processor comprises a cascade of token
processing logics configured to pass a token signal through
the token processing logics and generate a pulse or active
signal from the token signal, and an inverter coupled to the
cascade of the token processing logics. The apparatus further
comprises a token jump processing circuit coupled to the
cascade of token processing logics and configured to control
which token processing logic to process next the token signal
in the cascade of token processing logics by adjusting a polar-
ity of a token sense logic at one or more token processing
logics. The controlling allows token forward and backward
jumps over the one or more token processing logics in the
cascade. The apparatus further comprises a memory block for
each token processing logic in the cascade. The memory
block memorizes a polarity status for the token processing
logic.

The foregoing has outlined rather broadly the features of an
embodiment of the present invention in order that the detailed
description of the invention that follows may be better under-
stood. Additional features and advantages of embodiments of
the invention will be described hereinafter, which form the
subject ofthe claims of the invention. It should be appreciated
by those skilled in the art that the conception and specific
embodiments disclosed may be readily utilized as a basis for
modifying or designing other structures or processes for car-
rying out the same purposes of the present invention. It should
also be realized by those skilled in the art that such equivalent
constructions do not depart from the spirit and scope of the
invention as set forth in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven-
tion, and the advantages thereof, reference is now made to the
following descriptions taken in conjunction with the accom-
panying drawing, in which:

FIG. 1illustrates a Sutherland asynchronous micropipeline
architecture;

FIG. 2 illustrates a token ring architecture;

FIG. 3 illustrates a token ring based control logic;

FIG. 4 illustrates a token processing logic;

FIG. 5 illustrates an embodiment of token forward/back-
ward jumps over eight token-logics on a token ring;

FIG. 6 illustrates an embodiment of a token jump architec-
ture;

FIG. 7 illustrates an embodiment of a polarity reset logic;
and

FIG. 8 illustrates an embodiment of a method for an asyn-
chronous processor architecture.

Corresponding numerals and symbols in the different fig-
ures generally refer to corresponding parts unless otherwise
indicated. The figures are drawn to clearly illustrate the rel-
evant aspects of the embodiments and are not necessarily
drawn to scale.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

The making and using of the presently preferred embodi-
ments are discussed in detail below. It should be appreciated,
however, that the present invention provides many applicable
inventive concepts that can be embodied in a wide variety of
specific contexts. The specific embodiments discussed are
merely illustrative of specific ways to make and use the inven-
tion, and do not limit the scope of the invention.
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FIG.1illustrates a Sutherland asynchronous micropipeline
architecture. The Sutherland asynchronous micropipeline
architecture is one form of asynchronous micropipeline
architecture that uses a handshaking protocol to operate the
micropipeline building blocks. The Sutherland asynchronous
micropipeline architecture includes a plurality of computing
logics linked in sequence via flip-flops or latches. The com-
puting logics are arranged in series and separated by the
latches between each two adjacent computing logics. The
handshaking protocol is realized by Muller-C elements (la-
beled C) to control the latches and thus determine whether
and when to pass information between the computing logics.
This allows for an asynchronous or clockless control of the
pipeline without the need for timing signal. A Muller-C ele-
ment has an output coupled to a respective latch and two
inputs coupled to two other adjacent Muller-C elements, as
shown. Each signal has one of two states (e.g., 1 and 0, or true
and false). The input signals to the Muller-C elements are
indicated by A(i), A(i+1), A(i+2), A(i+3) for the backward
direction and R(i), R(i+1), R(i+2), R(i+3) for the forward
direction, where 1, i+1, 1+2, i+3 indicate the respective stages
in the series. The inputs in the forward direction to Muller-C
elements are delayed signals, via delay logic stages The
Muller-C element also has a memory that stores the state of'its
previous output signal to the respective latch. A Muller-C
element sends the next output signal according to the input
signals and the previous output signal. Specifically, if the two
input signals, R and A, to the Muller-C element have different
state, then the Muller-C element outputs A to the respective
latch. Otherwise, the previous output state is held. The latch
passes the signals between the two adjacent computing logics
according to the output signal of the respective Muller-C
element. The latch has a memory of the last output signal
state. If there is state change in the current output signal to the
latch, then the latch allows the information (e.g., one or more
processed bits) to pass from the preceding computing logic to
the next logic. If there is no change in the state, then the latch
blocks the information from passing. This Muller-C element
is a non-standard chip component that is not typically sup-
ported in function libraries provided by manufacturers for
supporting various chip components and logics. Therefore,
implementing on a chip the function of the architecture above
based on the non-standard Muller-C elements is challenging
and not desirable.

FIG. 2 illustrates an example of a token ring architecture
which is a suitable alternative to the architecture above in
terms of chip implementation. The components of this archi-
tecture are supported by standard function libraries for chip
implementation. As described above, the Sutherland asyn-
chronous micropipeline architecture requires the handshak-
ing protocol, which is realized by the non-standard Muller-C
elements. In order to avoid using Muller-C elements (as in
FIG. 1), a series of token processing logics are used to control
the processing of different computing logics (not shown),
such as processing units on a chip (e.g., ALUs) or other
functional calculation units, or the access of the computing
logics to system resources, such as registers or memory. To
cover the long latency of some computing logics, the token
processing logic is replicated to several copies and arranged
in a series of token processing logics, as shown. Each token
processing logic in the series controls the passing of one or
more token signals (associated with one or more resources). A
token signal passing through the token processing logics in
series forms a token ring. The token ring regulates the access
of the computing logics (not shown) to the system resource
(e.g., memory, register) associated with that token signal. The
token processing logics accept, hold, and pass the token sig-
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4

nal between each other in a sequential manner. When a token
signal is held by a token processing logic, the computing logic
associated with that token processing logic is granted the
exclusive access to the resource corresponding to that token
signal, until the token signal is passed to a next token pro-
cessing logic in the ring.

FIG. 3 illustrates an example of a token ring based control
logic, which is part of the token ring architecture above.
According to this logic, the token ring consists of a cascade
(series) of token processing logics and an inverter. The token
processing logics process a token signal as discussed above.
The inverter simply inverts the state (e.g., from O to 1, or 1 to
0) of the token signal from the last token processing logic
before sending the inverted token signal back to the start of
the ring. The token signal is referred to as an edge signal that
passes through one token processing logic to the next. Addi-
tionally, an external enable signal controls when to process an
incoming token signal at each token processing logic. Fur-
ther, a pulse or active signal is generated from each token
processing logic according to the processing of its incoming
token signal, where the token signal can suffer from certain
processing latency when going through a token processing
logic. The pulse signal is sent from a token processing logic to
a corresponding computing logic (not shown) to control, start,
or allow the computing logic access to a resource associated
with the token signal.

FIG. 4 illustrates an example of a token processing logic,
which is part of the token ring architecture above. The token
processing logic can be implemented in or coupled to a pro-
cessing block (e.g., arithmetic and logic unit (ALU)) or other
functional calculation units of an asynchronous processor. A
token processing logic can be abstracted into 3 logics: token
sense & latch logic, token delay logic, and pulse or active
signal generation logic.

The token processing logic includes a token sense and latch
logic. The token sense and latch logic is a clockless edge-
sensitive circuit with polarity memory, meaning that it does
not use or operate based on a fed in clock signal and it
memorizes a polarity status of the token sense logic, as
described below. The operation and timing of the logic is
controlled via the token signal and other means without using
a clock timing. An external enable signal, referred to as a
gating enable signal, to the token sense and latch logic pro-
vides a gating condition which determines whether the token
signal can be processed or should be blocked upon reaching
the token processing logic. If the gating condition or signal is
set to a predefined high impedance signal, then the incoming
token signal is blocked from being processed at the logic,
whether the token reaches the logic or not. Otherwise, the
token signal is processed by the logic when it arrives. The
gating enable signal controls the latch part of the token pro-
cessing logic to allow or block the incoming token signal.
Further, when the token signal is passed, the latest polarity
status is memorized in the token processing logic. Specifi-
cally, if a positive-edge token signal has passed through the
token logic, then the token sense logic part becomes negative-
edge-sensitive. Alternatively, if a negative-edge token signal
has passed through, this token sense logic becomes positive-
edge-sensitive.

The token delay logic controls whether to delay the token
signal within the token processing logic or bypass the token
signal and allow it to pass through the logic without delay.
The consume or bypass decision is determines by an external
logic, e.g., based on a table associating the tokens with com-
puting logics that controlled by their respective token pro-
cessing logics, as described above. Delaying the token signal
allows the respective computing logic to process information/
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access system resource while the token signal is delayed. This
is referred to as consuming the token signal. When the token
signal is consumed, the pulse/active generation logic is trig-
gered to send a pulse/active signal to the respective comput-
ing logic to process information/access system resource,
while the token is delayed.

The toke signal in the above architectures and logics has
two limits: it must be forward-only, and it must be passed
from one toke processing logic to its consecutive next one.
The limitations of such a token-based pipeline include pipe-
line speculation where the forward-only token-system has
difficulty to revoke and undo incorrectly speculated instruc-
tions. The limitations also include pipeline flush where the
forward-only and consecutive-passing token system has to
wait for completing token wrap-round to change program
flow. Another limitation the pipeline stall, where the consecu-
tive-passing token system cannot jump over some stalls.

In an embodiment, a universal token jump logic is intro-
duced to allow token forward jumps and token backward
jumps over the token processing logics. The universal token
jump logic is configured to monitor the polarity status of each
token sense logic corresponding to a token processing logic
(also referred to herein as a token logic), and trigger to invert
the polarity status of certain token logic(s). FIG. 5 illustrates
an example embodiment of eight token logics (labeled 1 to 8)
with a passing through token ring. In the case of a token
forward jump, polarities of the token logics 3 and 4 are
inverted from 1 (positive edge sensitive) to O (negative edge
sensitive) before the token signal is allowed (by gating signal)
to go into the two token logics. Thus, the token signal
bypasses or jumps over the token logics 3 and 4, and reaches
the token logic 5. In the case of token backward jump, polari-
ties of the token logics 1 and 2 are inverted from O to 1 before
the token signal is allowed (by gating signal) to go into the
two token logics. Thus, the token signal jumps backward or
returns to the token logic 1.

FIG. 6 illustrates an embodiment of a token jump architec-
ture. On top of a token ring, a universal token jump logic is
built or added to control token forward/backward jumps. The
token can jump if the polarity statuses of the token processing
logics are properly adjusted. For instance, prior to arrival of
the token signal, the polarity status of a token logic is inverted,
(e.g., from 1 or positive edge sensitive to 0 or negative edge
sensitive or vice versa) allowing the token to jump over this
token logic to the next token logic. The same process can be
repeated for an integer N of consecutive token logics to cause
the token to forward jump over the N token logics and imme-
diately reach the N+1-th token logic in the ring. The token
forward jump can resolve pipeline stall and dynamic sched-
uling and the like. Alternatively, after the token passes
through N token logics, the polarity status of the N token
logics is inverted (e.g., from O to 1 or from 0 to 1) causing the
token signal to backward jump to the start of the N token
logics. The token backward jump can resolve pipeline specu-
lation and flush and the like.

FIG. 7 illustrates an embodiment of a universal token jump
logic that adjusts the polarity status of a token logic from the
token ring architecture to cause forward or backward jumps,
as decided by the universal token jump logic. The polarity
reset consists of two signals: setl_signal and set0_signal. The
setl_signal is a positive-edge-sensitive enable signal. This
means that if setl_signal is set, the token-processing logic’s
polarity is forced to “1” status, so that the token sense logic
becomes positive-edge-sensitive. The set0_signal is a nega-
tive-edge-sensitive enable signal. This means that if
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set0_signal is set, the token-processing logic’s polarity is
forced to “0” status so that the token-sense-logic becomes
negative-edge-sensitive.

FIG. 8 shows an embodiment method for an asynchronous
processor architecture. At a step 810 of the method, a token
signal is passed through a token ring comprising a cascade of
token processing logics. As such, the method performs one of
switching the token sense logic (in the token processing logic)
to negative edge sensitive upon detecting a positive edge
token passing through, and switching the token sense logic to
positive edge sensitive upon detecting a negative edge token
passing through. At step 820, the method controls when to
process next the token signal in the cascade of token process-
ing logics using an external enable signal to the token pro-
cessing logic. The controlling includes, at step 830, monitor-
ing a polarity status of each token processing logic of the
cascade of token processing logics. At step 840, the method
resets or inverts the polarity status of one or more token
processing logics, in case of forward and backward jumps
over token processing logics are needed (as decided by the
universal token jump logic).

While several embodiments have been provided in the
present disclosure, it should be understood that the disclosed
systems and methods might be embodied in many other spe-
cific forms without departing from the spirit or scope of the
present disclosure. The present examples are to be considered
as illustrative and not restrictive, and the intention is not to be
limited to the details given herein. For example, the various
elements or components may be combined or integrated in
another system or certain features may be omitted, or not
implemented.

In addition, techniques, systems, subsystems, and methods
described and illustrated in the various embodiments as dis-
crete or separate may be combined or integrated with other
systems, modules, techniques, or methods without departing
from the scope of the present disclosure. Other items shown
ordiscussed as coupled or directly coupled or communicating
with each other may be indirectly coupled or communicating
through some interface, device, or intermediate component
whether electrically, mechanically, or otherwise. Other
examples of changes, substitutions, and alterations are ascer-
tainable by one skilled in the art and could be made without
departing from the spirit and scope disclosed herein.

What is claimed is:
1. A method by a asynchronous processor device, the
method comprising:

passing, within the asynchronous processor device, a token
signal through a token ring comprising a cascade of
token processing logics, wherein the token processing
logics are all located in the asynchronous processor
device, and wherein the asynchronous processor device
is a single physical electronic device or chipset;

storing, in a memory component, a value indicating a
polarity status at each token processing logic in the
asynchronous processor device, wherein the value indi-
cating the polarity status is one of two values indicating
two states of polarity;

controlling which token processing logic is next in the
cascade of token processing logics within the single
physical electronic device to process the token signal by
changing, for one or more token processing logics, the
value indicating the polarity status from a first value of
the two values to a second value of the two values,
wherein the token signal jumps over the token process-
ing logics by skipping each token processing logic of
which the value has been changed.
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2. The method of claim 1, wherein the controlling causes
the token signal to forward or backward jumps by skipping
the one or more token processing logics in the cascade.

3. The method of claim 1, wherein the value indicating the
polarity status is changed by applying a reset signal to set the
token processing logics, and wherein the polarity reset signal
is one of two signals.

4. The method of claim 3 further comprising performing
one of changing the value indicating the polarity status to the
first value of the two values if the reset signal is a first signal
of the two signals, and changing the value indicating the
polarity status to the second value of the two values if the reset
signal is a second signal of the two signals.

5. The method of claim 4, wherein the value indicating the
polarity status at one or more consecutive token processing
logics is changed, thereby causing to restart passing the token
signal at the one or more consecutive token processing logics.

6. The method of claim 4, wherein the value indicating the
polarity status at one or more consecutive token processing
logics is changed, thereby causing to start passing the token
signal at a next token process logic to the one or more con-
secutive token processing logics.

7. The method of claim 1, wherein passing the token signal
through a token processing logic in the cascade of token
processing logics includes performing one of changing the
value indicating the polarity status to the second value of the
two values upon detecting the token signal to be a first defined
token signal, and changing the value indicating the polarity
status to the first value of the two values upon detecting the
token signal to be a second defined token signal.

8. The method of claim 1 further comprising processing the
token signal in a token processing logic of the cascade of
token processing logics according to a gating enable signal
other than the token signal for the token processing logic if the
gating enable signal is set to a defined enable signal to the
token processing logic.

9. The method of claim 1 further comprising blocking
processing the token signal at the token processing logic upon
applying a gating enable signal other than the token signal for
the token processing logic if the gating enable signal is set to
a predefined high impedance signal.

10. A method performed at an asynchronous processor
device, the method comprising:

storing, for each token processing logic in a cascade of

token processing logics in the asynchronous processor
device, a value indicating a polarity status in a memory
component at each of the token processing logics,
wherein the value indicating the polarity status is one of
two values indicating two states of polarity, and wherein
the asynchronous processor device is a single physical
electronic device or chipset; and

changing the value indicating the polarity status in one or

more token processing logic from a first value of the two
values to a second value of the two values thereby caus-
ing a token signal to forward or backward jump over the
token processing logics by skipping one or more of the
token processing logics in the asynchronous processor
device.

11. The method of claim 10 further comprising forcing a
forward jump of the token signal by skipping one or more
token processing logics by changing the value indicating the
polarity status of the one or more token processing logics to
the second value of the two values upon detecting the token
signal to be a first defined token signal.

12. The method of claim 11, wherein forcing the token
signal to forward jump by skipping one or more token pro-
cessing logics includes sending a second signal other than the
token signal to the one or more token processing logics, and
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wherein the second signal causes the changing of the value
indicating the polarity status to the second value of the two
values.

13. The method of claim 12 further comprising forcing a
forward jump of the token signal by skipping one or more
token processing logics by changing the value indicating the
polarity status of the one or more token processing logics to
the first value of the two values upon detecting the token
signal to be a second defined token signal.

14. The method of claim 13, wherein forcing the token
signal to forward jump by skipping one or more token pro-
cessing logics includes sending a first signal other than the
token signal to the one or more token processing logics, and
wherein the first signal causes the changing of the value
indicating the polarity status to the first value of the two
values.

15. The method of claim 10 further comprising forcing a
backward jump of the token signal by skipping one or more
token processing logics by changing the value indicating the
polarity status of the one or more token processing logics to
the first value of the two values upon detecting the token
signal to be a second defined token signal.

16. The method of claim 15, wherein forcing the token
signal to backward jump by skipping one or more token
processing logics includes sending a first signal other than the
token signal to the one or more token processing logics, and
wherein the first signal causes the changing of the value
indicating the polarity status to the first value of the two
values.

17. The method of claim 16 further comprising forcing a
backward jump of the token signal by skipping one or more
token processing logics by changing the value indicating the
polarity status of the one or more token processing logics to
the second value of the two values upon detecting the token
signal to be a first defined token signal.

18. The method of claim 17, wherein forcing the token
signal to backward jump by skipping one or more token
processing logics includes sending a second signal other than
the token signal to the one or more token processing logics,
and wherein the second signal causes the changing of the
value indicating the polarity status to the second value of the
two values.

19. An apparatus for an asynchronous processor device, the
apparatus comprising:

a cascade of token processing logics in the asynchronous
processor device, wherein the token processing logics
are configured to pass a token signal through the token
processing logics and generate a pulse or active signal
from the token signal, wherein each one of the token
processing logics in the asynchronous processor device
includes a token sense and latch logic with a memory
component for storing a value indicating a polarity sta-
tus, and wherein the asynchronous processor device is a
single physical electronic device or chipset;

an inverter coupled to the cascade of the token processing
logics; and

a token jump processing circuit coupled to the cascade of
token processing logics and configured to control which
token processing logic is next in the cascade of token
processing logics to process the token signal by chang-
ing, for one or more token processing logics, the value
indicating the polarity status from a first value of the two
values to a second value of the two values, wherein the
token signal jumps over the token processing logics by
skipping each token processing logic of which the value
has been changed.

20. The apparatus of claim 19, wherein the controlling

causes token forward or backward passing through the one or
more token processing logics in the cascade.



US 9,325,520 B2

9

21. The apparatus of claim 19, wherein the token jump
processing circuit is configured to force a forward jump of the
token signal by skipping one or more token processing logics
by performing one of changing the value indicating the polar-
ity status of the one or more token processing logics to the
second value of the two values upon detecting a first signal
other than the token signal, and changing the value indicating
the polarity status of the one or more token processing logics
to the first value of the two values upon detecting a second
signal other than the token signal.

22. The apparatus of claim 21, wherein the token jump
processing circuit is configured to force a backward jump of
the token signal by skipping one or more token processing
logics by performing one of changing the value indicating the
polarity status of the one or more token processing logics to
the first value upon detecting the second signal, and changing
the value indicating the polarity status of the one or more
token processing logics to the second value upon detecting
the first signal.

23. The apparatus of claim 19 further comprising a gating
condition logic coupled to the cascade of token processing
logics and configured to allow and block processing the token
signal at the token processing logics by applying a gating
signal other than the token signal regardless whether the
token signal has reached the token processing logics.

24. The apparatus of claim 19, wherein a token processing
logic in the cascade comprises a token sense and latch logic,
a token delay logic, and a pulse or active signal generation
logic.
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